cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
↳ QTRS
↳ AAECC Innermost
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, x, y, z) → COND1(and(eq(x, y), gr(x, z)), x, y, z)
COND1(true, x, y, z) → GR(y, z)
COND2(false, x, y, z) → EQ(x, y)
COND2(true, x, y, z) → P(y)
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, x, y, z) → AND(eq(x, y), gr(x, z))
COND2(true, x, y, z) → GR(y, z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
EQ(s(x), s(y)) → EQ(x, y)
COND2(false, x, y, z) → GR(x, z)
COND2(true, x, y, z) → P(x)
GR(s(x), s(y)) → GR(x, y)
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
COND2(false, x, y, z) → COND1(and(eq(x, y), gr(x, z)), x, y, z)
COND1(true, x, y, z) → GR(y, z)
COND2(false, x, y, z) → EQ(x, y)
COND2(true, x, y, z) → P(y)
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, x, y, z) → AND(eq(x, y), gr(x, z))
COND2(true, x, y, z) → GR(y, z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
EQ(s(x), s(y)) → EQ(x, y)
COND2(false, x, y, z) → GR(x, z)
COND2(true, x, y, z) → P(x)
GR(s(x), s(y)) → GR(x, y)
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
EQ(s(x), s(y)) → EQ(x, y)
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
EQ(s(x), s(y)) → EQ(x, y)
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
EQ(s(x), s(y)) → EQ(x, y)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
GR(s(x), s(y)) → GR(x, y)
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
GR(s(x), s(y)) → GR(x, y)
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
GR(s(x), s(y)) → GR(x, y)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
COND2(false, x, y, z) → COND1(and(eq(x, y), gr(x, z)), x, y, z)
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
COND2(false, x, y, z) → COND1(and(eq(x, y), gr(x, z)), x, y, z)
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
COND2(false, x, y, z) → COND1(and(eq(x, y), gr(x, z)), x, y, z)
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, 0, s(x0), y2) → COND1(and(false, gr(0, y2)), 0, s(x0), y2)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), 0, y2) → COND1(and(false, gr(s(x0), y2)), s(x0), 0, y2)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(false, 0, y1, x0) → COND1(and(eq(0, y1), false), 0, y1, x0)
COND2(false, 0, 0, y2) → COND1(and(true, gr(0, y2)), 0, 0, y2)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
COND2(false, 0, s(x0), y2) → COND1(and(false, gr(0, y2)), 0, s(x0), y2)
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), 0, y2) → COND1(and(false, gr(s(x0), y2)), s(x0), 0, y2)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(false, 0, y1, x0) → COND1(and(eq(0, y1), false), 0, y1, x0)
COND2(false, 0, 0, y2) → COND1(and(true, gr(0, y2)), 0, 0, y2)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), 0, y2) → COND1(and(false, gr(s(x0), y2)), s(x0), 0, y2)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(false, 0, y1, x0) → COND1(and(eq(0, y1), false), 0, y1, x0)
COND2(false, 0, 0, y2) → COND1(and(true, gr(0, y2)), 0, 0, y2)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, s(x0), 0, y2) → COND1(false, s(x0), 0, y2)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, s(x0), 0, y2) → COND1(false, s(x0), 0, y2)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(false, 0, y1, x0) → COND1(and(eq(0, y1), false), 0, y1, x0)
COND2(false, 0, 0, y2) → COND1(and(true, gr(0, y2)), 0, 0, y2)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(false, 0, y1, x0) → COND1(and(eq(0, y1), false), 0, y1, x0)
COND2(false, 0, 0, y2) → COND1(and(true, gr(0, y2)), 0, 0, y2)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, 0, y1, x0) → COND1(false, 0, y1, x0)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(false, 0, y1, x0) → COND1(false, 0, y1, x0)
COND2(false, 0, 0, y2) → COND1(and(true, gr(0, y2)), 0, 0, y2)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(false, 0, 0, y2) → COND1(and(true, gr(0, y2)), 0, 0, y2)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, 0, 0, y2) → COND1(and(true, false), 0, 0, y2)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, 0, 0, y2) → COND1(and(true, false), 0, 0, y2)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), p(s(x0)), 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), p(s(x0)), s(x1))
COND2(true, y0, 0, x0) → COND2(false, p(y0), p(0), x0)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), p(s(x0)), 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), p(s(x0)), s(x1))
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(true, y0, 0, x0) → COND2(false, p(y0), p(0), x0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), p(s(x0)), s(x1))
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(true, y0, 0, x0) → COND2(false, p(y0), p(0), x0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(true, y0, 0, x0) → COND2(false, p(y0), p(0), x0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(true, y0, 0, x0) → COND2(false, p(y0), 0, x0)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(true, y0, 0, x0) → COND2(false, p(y0), 0, x0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND1(true, y0, s(x0), 0) → COND2(true, y0, s(x0), 0)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND1(true, y0, s(x0), 0) → COND2(true, y0, s(x0), 0)
COND2(true, y0, 0, x0) → COND2(false, p(y0), 0, x0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, s(x0), 0, 0) → COND1(and(false, true), s(x0), 0, 0)
COND2(false, s(x0), s(x1), 0) → COND1(and(eq(x0, x1), true), s(x0), s(x1), 0)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND2(false, s(x0), 0, 0) → COND1(and(false, true), s(x0), 0, 0)
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(false, s(x0), s(x1), 0) → COND1(and(eq(x0, x1), true), s(x0), s(x1), 0)
COND2(true, y0, 0, x0) → COND2(false, p(y0), 0, x0)
COND1(true, y0, s(x0), 0) → COND2(true, y0, s(x0), 0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(true, y0, 0, x0) → COND2(false, p(y0), 0, x0)
COND1(true, y0, s(x0), 0) → COND2(true, y0, s(x0), 0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(true, s(x0), 0, y1) → COND2(false, x0, 0, y1)
COND2(true, 0, 0, y1) → COND2(false, 0, 0, y1)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND2(true, s(x0), 0, y1) → COND2(false, x0, 0, y1)
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND2(true, 0, 0, y1) → COND2(false, 0, 0, y1)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND1(true, y0, s(x0), 0) → COND2(true, y0, s(x0), 0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND2(true, s(x0), 0, y1) → COND2(false, x0, 0, y1)
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND1(true, y0, s(x0), 0) → COND2(true, y0, s(x0), 0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(s(x0), s(z2))), s(x0), s(z1), s(z2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(s(x0), s(z2))), s(x0), s(z1), s(z2))
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND2(true, s(x0), 0, y1) → COND2(false, x0, 0, y1)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND1(true, y0, s(x0), 0) → COND2(true, y0, s(x0), 0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(s(x0), s(z2))), s(x0), s(z1), s(z2))
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(true, s(x0), 0, y1) → COND2(false, x0, 0, y1)
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND2(true, s(x0), 0, y1) → COND2(false, x0, 0, y1)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
COND2(true, s(x0), 0, y1) → COND2(false, x0, 0, y1)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(true, s(x0), 0, s(z2)) → COND2(false, x0, 0, s(z2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(true, s(x0), 0, s(z2)) → COND2(false, x0, 0, s(z2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(true, s(x0), 0, s(z2)) → COND2(false, x0, 0, s(z2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, s(x0), s(y_2), s(x2)) → COND1(and(eq(s(x0), s(y_2)), gr(x0, x2)), s(x0), s(y_2), s(x2))
COND2(false, s(x0), 0, s(x2)) → COND1(and(eq(s(x0), 0), gr(x0, x2)), s(x0), 0, s(x2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), s(y_2), s(x2)) → COND1(and(eq(s(x0), s(y_2)), gr(x0, x2)), s(x0), s(y_2), s(x2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
COND2(false, s(x0), 0, s(x2)) → COND1(and(eq(s(x0), 0), gr(x0, x2)), s(x0), 0, s(x2))
COND2(true, s(x0), 0, s(z2)) → COND2(false, x0, 0, s(z2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), 0, s(x2)) → COND1(and(eq(s(x0), 0), gr(x0, x2)), s(x0), 0, s(x2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), 0, s(x2)) → COND1(and(eq(s(x0), 0), gr(x0, x2)), s(x0), 0, s(x2))
eq(s(x), 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
p(0)
p(s(x0))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ QDP
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), 0, s(x2)) → COND1(and(eq(s(x0), 0), gr(x0, x2)), s(x0), 0, s(x2))
eq(s(x), 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, s(x0), 0, s(x2)) → COND1(and(false, gr(x0, x2)), s(x0), 0, s(x2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), 0, s(x2)) → COND1(and(false, gr(x0, x2)), s(x0), 0, s(x2))
eq(s(x), 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), 0, s(x2)) → COND1(and(false, gr(x0, x2)), s(x0), 0, s(x2))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ QDP
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), 0, s(x2)) → COND1(and(false, gr(x0, x2)), s(x0), 0, s(x2))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, s(x0), 0, s(x2)) → COND1(false, s(x0), 0, s(x2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), 0, s(x2)) → COND1(false, s(x0), 0, s(x2))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Rewriting
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND2(false, s(x0), s(y_2), s(x2)) → COND1(and(eq(s(x0), s(y_2)), gr(x0, x2)), s(x0), s(y_2), s(x2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, s(x0), s(y_2), s(x2)) → COND1(and(eq(x0, y_2), gr(x0, x2)), s(x0), s(y_2), s(x2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Rewriting
↳ QDP
↳ QDPOrderProof
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
Used ordering: Polynomial interpretation [25]:
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
POL(0) = 0
POL(COND1(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(COND2(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(and(x1, x2)) = 0
POL(eq(x1, x2)) = 0
POL(false) = 1
POL(gr(x1, x2)) = 1
POL(p(x1)) = x1
POL(s(x1)) = 1 + x1
POL(true) = 1
p(s(x)) → x
p(0) → 0
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Rewriting
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Rewriting
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
p(0)
p(s(x0))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Rewriting
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonInfProof
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
(1) (COND2(gr(x4, x5), s(x3), s(x4), s(x5))=COND2(false, s(x6), s(x7), s(x8)) ⇒ COND1(true, s(x3), s(x4), s(x5))≥COND2(gr(x4, x5), s(x3), s(x4), s(x5)))
(2) (gr(x4, x5)=false ⇒ COND1(true, s(x3), s(x4), s(x5))≥COND2(gr(x4, x5), s(x3), s(x4), s(x5)))
(3) (false=false ⇒ COND1(true, s(x3), s(0), s(x18))≥COND2(gr(0, x18), s(x3), s(0), s(x18)))
(4) (gr(x20, x21)=false∧(∀x22:gr(x20, x21)=false ⇒ COND1(true, s(x22), s(x20), s(x21))≥COND2(gr(x20, x21), s(x22), s(x20), s(x21))) ⇒ COND1(true, s(x3), s(s(x20)), s(s(x21)))≥COND2(gr(s(x20), s(x21)), s(x3), s(s(x20)), s(s(x21))))
(5) (COND1(true, s(x3), s(0), s(x18))≥COND2(gr(0, x18), s(x3), s(0), s(x18)))
(6) (COND1(true, s(x3), s(x20), s(x21))≥COND2(gr(x20, x21), s(x3), s(x20), s(x21)) ⇒ COND1(true, s(x3), s(s(x20)), s(s(x21)))≥COND2(gr(s(x20), s(x21)), s(x3), s(s(x20)), s(s(x21))))
(7) (COND1(and(eq(x9, x10), gr(x9, x11)), s(x9), s(x10), s(x11))=COND1(true, s(x12), s(x13), s(x14)) ⇒ COND2(false, s(x9), s(x10), s(x11))≥COND1(and(eq(x9, x10), gr(x9, x11)), s(x9), s(x10), s(x11)))
(8) (eq(x9, x10)=x23∧gr(x9, x11)=x24∧and(x23, x24)=true ⇒ COND2(false, s(x9), s(x10), s(x11))≥COND1(and(eq(x9, x10), gr(x9, x11)), s(x9), s(x10), s(x11)))
(9) (true=true∧eq(x9, x10)=true∧gr(x9, x11)=true ⇒ COND2(false, s(x9), s(x10), s(x11))≥COND1(and(eq(x9, x10), gr(x9, x11)), s(x9), s(x10), s(x11)))
(10) (eq(x9, x10)=true∧gr(x9, x11)=true ⇒ COND2(false, s(x9), s(x10), s(x11))≥COND1(and(eq(x9, x10), gr(x9, x11)), s(x9), s(x10), s(x11)))
(11) (true=true∧gr(0, x11)=true ⇒ COND2(false, s(0), s(0), s(x11))≥COND1(and(eq(0, 0), gr(0, x11)), s(0), s(0), s(x11)))
(12) (eq(x29, x30)=true∧gr(s(x29), x11)=true∧(∀x31:eq(x29, x30)=true∧gr(x29, x31)=true ⇒ COND2(false, s(x29), s(x30), s(x31))≥COND1(and(eq(x29, x30), gr(x29, x31)), s(x29), s(x30), s(x31))) ⇒ COND2(false, s(s(x29)), s(s(x30)), s(x11))≥COND1(and(eq(s(x29), s(x30)), gr(s(x29), x11)), s(s(x29)), s(s(x30)), s(x11)))
(13) (0=x32∧gr(x32, x11)=true ⇒ COND2(false, s(0), s(0), s(x11))≥COND1(and(eq(0, 0), gr(0, x11)), s(0), s(0), s(x11)))
(14) (eq(x29, x30)=true∧s(x29)=x37∧gr(x37, x11)=true∧(∀x31:eq(x29, x30)=true∧gr(x29, x31)=true ⇒ COND2(false, s(x29), s(x30), s(x31))≥COND1(and(eq(x29, x30), gr(x29, x31)), s(x29), s(x30), s(x31))) ⇒ COND2(false, s(s(x29)), s(s(x30)), s(x11))≥COND1(and(eq(s(x29), s(x30)), gr(s(x29), x11)), s(s(x29)), s(s(x30)), s(x11)))
(15) (true=true∧0=s(x34) ⇒ COND2(false, s(0), s(0), s(0))≥COND1(and(eq(0, 0), gr(0, 0)), s(0), s(0), s(0)))
(16) (gr(x35, x36)=true∧0=s(x35)∧(gr(x35, x36)=true∧0=x35 ⇒ COND2(false, s(0), s(0), s(x36))≥COND1(and(eq(0, 0), gr(0, x36)), s(0), s(0), s(x36))) ⇒ COND2(false, s(0), s(0), s(s(x36)))≥COND1(and(eq(0, 0), gr(0, s(x36))), s(0), s(0), s(s(x36))))
(17) (true=true∧eq(x29, x30)=true∧s(x29)=s(x39)∧(∀x31:eq(x29, x30)=true∧gr(x29, x31)=true ⇒ COND2(false, s(x29), s(x30), s(x31))≥COND1(and(eq(x29, x30), gr(x29, x31)), s(x29), s(x30), s(x31))) ⇒ COND2(false, s(s(x29)), s(s(x30)), s(0))≥COND1(and(eq(s(x29), s(x30)), gr(s(x29), 0)), s(s(x29)), s(s(x30)), s(0)))
(18) (gr(x40, x41)=true∧eq(x29, x30)=true∧s(x29)=s(x40)∧(∀x31:eq(x29, x30)=true∧gr(x29, x31)=true ⇒ COND2(false, s(x29), s(x30), s(x31))≥COND1(and(eq(x29, x30), gr(x29, x31)), s(x29), s(x30), s(x31)))∧(∀x42,x43,x44:gr(x40, x41)=true∧eq(x42, x43)=true∧s(x42)=x40∧(∀x44:eq(x42, x43)=true∧gr(x42, x44)=true ⇒ COND2(false, s(x42), s(x43), s(x44))≥COND1(and(eq(x42, x43), gr(x42, x44)), s(x42), s(x43), s(x44))) ⇒ COND2(false, s(s(x42)), s(s(x43)), s(x41))≥COND1(and(eq(s(x42), s(x43)), gr(s(x42), x41)), s(s(x42)), s(s(x43)), s(x41))) ⇒ COND2(false, s(s(x29)), s(s(x30)), s(s(x41)))≥COND1(and(eq(s(x29), s(x30)), gr(s(x29), s(x41))), s(s(x29)), s(s(x30)), s(s(x41))))
(19) (eq(x29, x30)=true ⇒ COND2(false, s(s(x29)), s(s(x30)), s(0))≥COND1(and(eq(s(x29), s(x30)), gr(s(x29), 0)), s(s(x29)), s(s(x30)), s(0)))
(20) (gr(x40, x41)=true∧eq(x40, x30)=true∧(∀x31:eq(x40, x30)=true∧gr(x40, x31)=true ⇒ COND2(false, s(x40), s(x30), s(x31))≥COND1(and(eq(x40, x30), gr(x40, x31)), s(x40), s(x30), s(x31)))∧(∀x42,x43,x44:gr(x40, x41)=true∧eq(x42, x43)=true∧s(x42)=x40∧(∀x44:eq(x42, x43)=true∧gr(x42, x44)=true ⇒ COND2(false, s(x42), s(x43), s(x44))≥COND1(and(eq(x42, x43), gr(x42, x44)), s(x42), s(x43), s(x44))) ⇒ COND2(false, s(s(x42)), s(s(x43)), s(x41))≥COND1(and(eq(s(x42), s(x43)), gr(s(x42), x41)), s(s(x42)), s(s(x43)), s(x41))) ⇒ COND2(false, s(s(x40)), s(s(x30)), s(s(x41)))≥COND1(and(eq(s(x40), s(x30)), gr(s(x40), s(x41))), s(s(x40)), s(s(x30)), s(s(x41))))
(21) (true=true ⇒ COND2(false, s(s(0)), s(s(0)), s(0))≥COND1(and(eq(s(0), s(0)), gr(s(0), 0)), s(s(0)), s(s(0)), s(0)))
(22) (eq(x47, x48)=true∧(eq(x47, x48)=true ⇒ COND2(false, s(s(x47)), s(s(x48)), s(0))≥COND1(and(eq(s(x47), s(x48)), gr(s(x47), 0)), s(s(x47)), s(s(x48)), s(0))) ⇒ COND2(false, s(s(s(x47))), s(s(s(x48))), s(0))≥COND1(and(eq(s(s(x47)), s(s(x48))), gr(s(s(x47)), 0)), s(s(s(x47))), s(s(s(x48))), s(0)))
(23) (COND2(false, s(s(0)), s(s(0)), s(0))≥COND1(and(eq(s(0), s(0)), gr(s(0), 0)), s(s(0)), s(s(0)), s(0)))
(24) (COND2(false, s(s(x47)), s(s(x48)), s(0))≥COND1(and(eq(s(x47), s(x48)), gr(s(x47), 0)), s(s(x47)), s(s(x48)), s(0)) ⇒ COND2(false, s(s(s(x47))), s(s(s(x48))), s(0))≥COND1(and(eq(s(s(x47)), s(s(x48))), gr(s(s(x47)), 0)), s(s(s(x47))), s(s(s(x48))), s(0)))
(25) (COND2(false, s(x40), s(x30), s(x41))≥COND1(and(eq(x40, x30), gr(x40, x41)), s(x40), s(x30), s(x41))∧(∀x42,x43,x44:gr(x40, x41)=true∧eq(x42, x43)=true∧s(x42)=x40∧(∀x44:eq(x42, x43)=true∧gr(x42, x44)=true ⇒ COND2(false, s(x42), s(x43), s(x44))≥COND1(and(eq(x42, x43), gr(x42, x44)), s(x42), s(x43), s(x44))) ⇒ COND2(false, s(s(x42)), s(s(x43)), s(x41))≥COND1(and(eq(s(x42), s(x43)), gr(s(x42), x41)), s(s(x42)), s(s(x43)), s(x41))) ⇒ COND2(false, s(s(x40)), s(s(x30)), s(s(x41)))≥COND1(and(eq(s(x40), s(x30)), gr(s(x40), s(x41))), s(s(x40)), s(s(x30)), s(s(x41))))
(26) (COND2(false, s(x40), s(x30), s(x41))≥COND1(and(eq(x40, x30), gr(x40, x41)), s(x40), s(x30), s(x41)) ⇒ COND2(false, s(s(x40)), s(s(x30)), s(s(x41)))≥COND1(and(eq(s(x40), s(x30)), gr(s(x40), s(x41))), s(s(x40)), s(s(x30)), s(s(x41))))
POL(0) = 0
POL(COND1(x1, x2, x3, x4)) = -1 + x1 + x2
POL(COND2(x1, x2, x3, x4)) = -1 - x1 + x2 + x3 - x4
POL(and(x1, x2)) = 1
POL(c) = -1
POL(eq(x1, x2)) = 0
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(s(x1)) = 2 + x1
POL(true) = 0
The following pairs are in Pbound:
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
The following rules are usable:
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
false → gr(0, x)
gr(x, y) → gr(s(x), s(y))
true → gr(s(x), 0)
and(false, x) → false
and(true, true) → true
and(x, false) → false
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Rewriting
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonInfProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
p(0) → 0
p(s(x)) → x
p(0)
p(s(x0))
From the DPs we obtained the following set of size-change graphs: